Brief information about the project

Name of the project	AP14871991 "Development of energy-intensive anode
1 3	materials based on conductive metal-organic frameworks
	(MOF) for metal-ion batteries"
Relevance	Technological advances dictate the need to improve both
	lithium and sodium batteries. The general point of
	scientific research is to find new materials for battery
	components, in particular, electrodes with higher energy
	density, long cycling capability, etc. The solution to these
	issues lies in the nature and structure of the materials used.
	A material must combine the possibility of multiple
	intercalation/deintercalation of metal ions without
	destroying the structure with maximum high capacitance
	and long cycling times. Obviously, a high surface area of
	electrode provides minimal diffusion and kinetic
	constraints and, consequently, high capacitance. In this
	regard, 3D materials have recently become popular, among
	which metal-organic frameworks (MOFs), which stand out
	for their spatial diversity. Due to their high porosity and
	excellent adsorption, catalytic activity, and the possibility
	of simultaneous implementation of different charge
	accumulation mechanisms, MOFs can exhibit high specific capacitance
Durnosa	The aim of the project is to develop and investigate new
Purpose	metal-organic framework (MOF)-based anode materials
	with intrinsic conductivity, high specific capacitance,
	power, and stability. Such electrodes will serve as the basis
	for the creation of energy-intensive metal-ion batteries.
Objectives	Synthesis of metal-organic frameworks Mn2(DSBDC),
	M2(DOBDC) (M = Mg, Mn, Zn).
	Studying the structure and conducting cyclic voltammetric
	studies of synthesized compounds.
	Galvanostatic studies of Mn2(DSBDC), M2(DOBDC) (M
	= Mg, Mn, Zn).
Expected and achieved results	1) Anode materials based on metal-organic frameworks
	that will have a high specific capacity, power, and stability.
	2) An optimized method for the synthesis of the proposed
	MOFs and a method for the fabrication of an anode based on them for lithium-ion and sodium-ion batteries.
	on them for humani-ion and sodium-ion batteries.
	3) Charge transfer mechanism in the electrode-passivation
	layer (SEI)-electrolyte system in the proposed MOF-based
	anode materials.
	The scientific results achieved can be used in the field of
	battery production, especially in the field of metal ion
	batteries which are much cheaper in comparison with
	lithium-ion batteries. Possible consumers of the results are
	JSC "Kazatomprom", "Astana Solar", which is the largest

	organization in Kazakhstan, uniting solar batteries across
	the country, and other organizations.
Research team members with their identifiers (Scopus Author ID, Researcher ID, ORCID, if available) and links to relevant profiles	 Kurbatov Andrey Scopus Author ID - 15519800600, Researcher ID - M-6232-2019, ORCID - 0000-0003-1883-310X Abdimomyn Saken Scopus Author ID - 57518892100, Researcher ID - GOW-8420-2022, ORCID - 0000-0002-5985-9050 Zhigalenok Yaroslav Scopus Author ID - 57862139800, Researcher ID - GSC-9737-2022, ORCID - 0000-0003-1452-1248 Kan Tatyana Scopus Author ID - 57359426400, Researcher ID - JVF-3477-2024, ORCID - 0000-0002-1222-2060 Kiyatova Marzhan ORCID - 0000-0002-9998-8527 Melsitova Elena RyabichevaMargarita ORCID - 0000-0003-4160-556X Shpigel Natanel Author ID - 56478799200, Researcher ID - HNR-0042-2023, ORCID - 0000-0003-2657-8639
List of publications with links to	
them	
Patents	

Figure 1. Obtained Zn-MOF samples

Figure 2. Obtained Mn-MOF samples